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LETTER TO THE EDITOR 

Percolation in a gradient: conductivity properties 
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Abstract. We investigate the conductivity properties of a randomly diluted medium where 
the fraction of present bonds varies along the mean voltage drop, and reaches the percolation 
threshold. We obtain the scaling of the conductivity as a function of the system size for 
any concentration profile. We show that a transient scaling regime also appears for small 
system sizes and a rapidly varying concentration of bonds close to the threshold. Finally 
the distribution of local currents is also investigated. 

Much effort has been spent trying to characterize the transport properties of systems 
close to the percolation threshold. In particular, for random resistor networks, where 
the fraction of conducting bonds, p, is uniform, the scaling of the conductivity as a 
function of p and of the system size is well known [ l ] .  

Inhomogeneous dilution, the so-called ‘percolation in a gradient’ problem, has 
been considered mainly for its geometrical properties [2]. In particular, it has been 
shown that it provides a very efficient tool for obtaining an accurate determination of 
the percolation threshold in two dimensions [3]. 

The aim of this letter is to show that the scaling of transport properties of 
inhomogeneous systems, where p depends on the position, can be readily analysed 
using the results derived for homogeneous systems. We will mainly address two points: 
first, the scaling of the conductivity in a lattice where the concentration of conducting 
bonds varies along the mean voltage drop and, second, the distribution of local currents 
in such a system. 

Let p ( y )  be the concentration of present bonds in a strip of width w, at a distance 
y from one border. We consider specifically the following profiles: 

We ask the following question: when the width of the strip goes to infinity, what is 
the scaling of the transverse conductivity of the strip with the width w? 

We will answer this question in two steps, and show numerical simulation which 
confirms our theoretical expectation. First we will show that if 5 is large enough, the 
conductivity of the strip will be controlled by that of the most poorly conducting part. 
However, due to the finite width of the strip and of the non-monotonous profile p ( y ) ,  
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the effective lower value of p that will determine the conductivity is not p c  but will 
evolve with w. Once this effective cutoff is determined, the computation of the conduc- 
tivity is straightforward. We will discuss some transient scaling regimes for low values 
of l and small widths. 

Using the fact that the correlation length, 6, diverges close to the threshold as 
6 - Ip -pel-", we propose as a criterion for the effective cutoff, the value of y = y* such 
that the correlation length at this point t ( y * )  matches y* exactly. In two dimensions, 
the correlation length exponent v =$. Up to a constant prefactor, this statement can 
be written as 

( P ( Y * ) - P J ”  = y *  (2) 

or 

(3)  y*(  w )  - w s 4 ( 1 + s u )  

where y*( w )  is the distance where the effective cutoff in p is reached. This kind of 
effective cutoff is used classically in the percolation problem in a gradient or, more 
generally, in many instances of critical phenomena with a spatial or temporal variation 
of the control parameter [3,4]. 

For small strip width, and small values of l, we may, however, have to consider 
an alternative cutoff such that the distance to the border where p = 1 is more restrictive 
than the distance to the p = p c  border. In such a case, we introduce a second length 
scale, y**, such that ,$(y**) = w - y**. Assuming y**<< w, we obtain 

(4) y* * (w)  - w ( c v - I ) I s v  

Note that y**/ w decreases with w and thus the condition y** << w is naturally fulfilled 
for a large enough width. Since (lv - 1 ) / l v  < [v/(l+ lv), for large system sizes, the 
first cutoff, y* ,  is more stringent than the second one, y**. Therefore, the latter cutoff 
can only appear in a transient regime. However, we will see numerically that some 
cases have to be analysed using this cut-off. 

We can view the strip as a continuous conducting material with varying conductivity 
along the mean voltage drop. In this case, the resistivity p(  w )  is simply given by the sum: 

where r ( y )  is the resistivity of the strip at a distance y from the border. We may now 
use the divergence of r ( p )  for a homogeneous system close to the threshold, 
characterized by an exponent t ( t  = 1.300 in two dimensions [ 5 ] )  

r ( p ) - ( p - P C ) - ‘ .  ( 6 )  

Combining this with ( 5 ) ,  we obtain 

This integral is not convergent when the exponent 5 is larger than l / t  = 0.77. This 
means, physically, that in this case the resistivity of the strip will be controlled by the 
lower cutoff introduced previously. In contrast, if I <  I / t  then p is finite (constant), 
and does not scale with the width of the strip. 
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Let us now concentrate on the case 5 > 1/ t. As mentioned previously, we can simply 
change the lower bound 0 in the integral (7), into y* from (3). Integration gives the 
final answer 

where 

Let us return for a moment to the effective cutoff determined by the discussion 
leading to (4). When the exponent 5 is small (although larger than l / t  for the scaling 
to hold) it might be that, when the width of the strip is small, the second cutoff y** 
appears to be the more restrictive. In such a case, the scaling of p gives 

p(  w )  - WXS(C) (10) 

where 

We have performed numerical simulation of the problem using a transfer-matrix 
method. The length of the strip used was lo5 in all cases. The width w ranges from 
2-20 (30 in some cases). We tested different exponents 5 :  0.5, 1,2, and 3 and obtained 
a good agreement with the results presented above. 

For 5=0.5 (figure 1) we clearly see a curvature such that the tangent exponent 
measured, 0.09, is certainly an upper bound. Thus we have ~ ~ ( 0 . 5 )  < 0.09, in agreement 
with the expected result 0 (since l <  l / t ) .  

For 5 = 2 (figure 2) and l=  3, respectively, we measured a value of x equal to 0.43 
and 0.55, whereas the expected values are 0.437 and 0.58. 

0.2 0.4 0.6 0.8 1 .o 1.2 

log(w) 

Figure 1. Log-log plot of the conductivity l / p  as a function of the strip width w for the 
profile given by equation (1) with 5 = 0.5. The slope of the straight line is 0.09. 
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Figure 2. Log-log plot of the conductivity l / p  as a function of the strip width w for the 
profile given by equation ( 1 )  with 4' = 2. The slope of the straight line is 0.43. 

For 5 = 1 (figure 3)  we see for 2 < w < 30 an apparent exponent 0.21, which can be 
compared to the transient regime exponent x,(l) = 0.2245. However, a clear curvature 
can be seen which suggests that the tangent exponent decreases with the system size. 
The expected asymptotic value is 0.128. 

(2 or more). 
Most probably it should occur for very small widths and is thus hidden by corrections 
to scaling effects. 

In plain homogeneous systems, at percolation threshold, the distribution of local 
currents has been shown to be multifractal [6,7]. In simple terms, this property states 
that the log-log histogram of the current distribution, rescaled by the logarithm of the 
system size, is size independent. Let us define the rescaled current a = -log( i)/log(L) 

Apparently, the transient regime cannot be seen for large values of 

logw) 

Figure 3. Log-log plot of the conductivity l / p  as a function of the strip width w for the 
profile given by equation ( 1 )  with l=  1.  The slope of the straight line is 0.21. 
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where i is the local current, and L the system size. The rescaled density f= 
log( n( i))/log( L), where n( i) is the logarithmically-binned current distribution. f( a) 
is a universal curve independent of the system size. 

In the gradient problem, we can also consider the current distribution in these 
rescaled variables. Distributions obtained for different system sizes collapse onto a 
single curve, as shown in figure 4 for the case of a linear profile ( 5  = 1). The numerical 
data were generated using square lattices of size 10 x 10, 15 x 15 and 20 x 20, (averaged 
over 100 lattices for the largest size). The current distribution was solved using a 
conjugate gradient algorithm with a precision of lo-''. 

0.0 0.5 1 .o 1.5 2.0 2.5 3.0 3.5 

a 

Figure 4. Current distribution in tenns of rescaled variables f and Q defined in the text. 
A good data collapse is obtained for three system sizes 10 (0), 15 (0) and 20 (+), with a 
linear variation of p (equation (1) with 5 = 1). 

The shape of the f( a) function in this case can be analysed using exactly the same 
formalism as developed in [8]. In [8], a temporal variation of p was considered, rather 
than a spatial one. However, the conclusion is identical. The f ( a )  in the case of a 
non-homogeneous system can be obtained by taking the convex envelope of the 
multifractal spectrum at the percolation threshold, plus the point of coordinate a = 1, 
and f = 2 +  1/5v. Thus we expect to see a 'wedge shape' for a close to 1 (i.e. two 
power-law behaviours, n( i )K i') which ends for large and small values of a with the 
multifractal spectrum at the effective cutoff value of p. This is confirmed by the shape 
of the histogram shown on figure 4. In particular the exponent 4 for a less than 1, is 
consistent with the expected value 1.6 reported in [8]. The fact that this exponent is 
less than 2 means that the second moment of the current distribution (the conductivity) 
will be controlled by the values of a that come from the curved part of the histogram, 
i.e. the values relative to the multifractal spectrum at the effective cutoff for p close to 
p c .  When 3 is less than 1/ t then the exponent 4 is larger than 2; thus the conductivity 
gets its dqminant contribution from the top of the histogram, i.e. from bonds in the 
bulk of the medium. This conclusion is consistent with our previous expectation: that 
the conductivity did not scale with the system size for 3 less than l/r. 

Let us conclude by noting that despite the fact that we concentrated our study on 
simple profiles, (l) ,  the results obtained are much more general. Since the medium 
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can be seen as a collection of ‘slices’ of different conductivities placed in series, the 
ordering of the local conductivities is not relevant. Thus p ( y )  can be seen as the 
distribution of the local conductivities, regardless of their precise location in space. 
Moreover, the behaviour of p ( y )  close to p c  (the equivalent of our parameter {) is the 
only factor that will determine the scaling properties of the conductivity, and of the 
current distribution. 

We acknowledge useful discussion with A Aharony, J Feder, and T Jbssang. AH and 
ELH are supported by the German-Norwegian Research Cooperation. 
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